
Improving Fault Injection in Automotive Model Based
Development using Fault Bypass Modeling

Rakesh Rana, Miroslaw Staron, Christian Berger, Jörgen Hansson

Computer Science & Engineering
Chalmers/ University of Gothenburg

Gothenburg, Sweden
rakesh.rana@gu.se

Martin Nilsson, Fredrik Törner

Volvo Car Corporation

Abstract: Fault injection is widely used for validating dependability of computer
systems. These techniques have been traditionally used for testing dependability of
the both hardware and software systems. With widespread use of model based
development in automotive software development more sophisticated needs arise
for using fault injection techniques at the model level, which can yield significant
benefits in combination with model-based testing or model mutation. In this paper,
we address challenges with injecting faults into behavioral models in terms of
analysis of results and propose a framework for distinguishing between correct and
incorrect simulation results. The focus is laid on an important challenge
encountered when injecting faults in continuous models – managing system-
environment interdependencies. We analyze the problem in details and outline an
effective approach to deal with this problem.

1 Introduction

Dependability is a very important feature of any computer system [BOE87]. A crash or
system failure causes discomfort for consumers who then associate the product with low
quality. For certain safety critical applications, such as within aerospace and automotive,
these failures may result in life threatening situations for the occupants. Therefore,
dependability validation is strictly monitored and regulated in development of safety
critical applications – for example by following standards like ISO 26262 [ISO11] in
automotive and DOC-178C [BRO11] for safety-critical software development within the
aerospace industry.

Fault injection is an important and widely used technique; it has been extensively used as
technique for experimental dependability evaluation of computer systems and for
evaluation of fault-tolerance mechanisms. Fault injection has traditionally been used for
emulating hardware and software faults on the prototypes. The prototype-based fault
injection has its advantages as given in [BOE87]:

• Identify dependability bottlenecks,

• Study system behavior in the presence of faults,
• Determine the coverage of error detection and recovery mechanisms, and
• Evaluate the effectiveness of fault tolerance mechanisms (such as reconfiguration

schemes) and performance loss.

Alongside the evolution of requirements for dependability, software product
development methodologies have significantly changed over last decade. Model Based
Development (MBD) has been embraced widely as preferred tool for developing
software systems. Many sectors such as aerospace and automotive domain today widely
use MBD for new software/function development [MST12]. As a consequence of this
widespread use of MBD, code generation has also gained momentum in these industries
and Model Based Testing (MBT) alongside with it. Traditional software development
within automotive and many other domains can be approximated to the established V-
model. In this model of software/product development, testing is heavily focused on the
right side, which leads to most defects being discovered late in the development process;
however MBD has the potential of shifting some of the effort spent on Verification &
Validation (V&V) to the left arm of V-model, i.e. by allowing testing of models at early
development phases some of the defects can be detected much sooner, this shift could
save significant amount of resources/cost for the projects [BOE87] and also reduce
development time.

Megen and Meyerhoff in their study [MM95] showed that about 50% of defects detected
during testing are found in test preparation, an activity which does not depend on the
executable code. Still previous case studies within the automotive domain, peak in open
defects is observed during the late stages of software development just before the release
dates [MST12]. These observations suggest that by using MBD and through testing
models early in the development phase, a possibility exists for shifting the open defect
peak from the right-hand side (close to release) towards earlier phases of the project.
This shifting of defect detection to the left (early detection) can provide better
opportunity for the teams to react early upon problems and thus avoid late defects. MBD
offers an important advantage with respect to early testability – the executable models
can be simulated to verify and validate the functionality at a very early stage of
development process. And by using fault injection in these behavioural models,
dependability measurements can also be done very early on; robust, high fault-tolerant
models thus can be identified and developed. The functional and logical errors can also
be identified early in the development process, thereby saving development time and
costs significantly.

For a majority of software functions developed within automotive and other domains –
real time behaviour is an important factor and often test cases depend on the system
behaviour [BK06]. One way to test the complex functional behaviour of such systems in
real time is to use closed loop testing of models with continuous signals, but testing
systems with continuous signals is poorly supported by existing test methods which are
generally data-driven [BK06]. Two major obstacles for testing behavioural/functional
models of software systems in a closed loop configuration with continuous signals using
fault injection techniques are:

• Realistic environment modelling, and

• Obtaining realistic system response in presence of injected faults to correctly
differentiate between normal system behaviour from system failure.

With regard to the first obstacle, most industrial domains currently using MBD on large
extent are either using or are developing virtual environmental models, which are
capable of simulating full system and environment conditions that are very close to real
ones. These models are intended not only to aid and accelerate new
conceptual/functional development, but also to test developed functional models in MIL
(Model in Loop) testing for possible logical errors [VBRE07]. Development of these
extensive environmental models addresses the first challenge.

In this paper we take a closer look at the second obstacle (b) and propose a framework to
overcome it. The rest of this paper is structured as follows. In the next part (section 2)
we provide an overview of fault injection techniques, which is followed by a discussion
on related work in section 3. In section 4, we describe and analyse the problem with
injecting faults on behavioural models using an example. Section 5 introduces the
proposed solution to the described problem followed by conclusions in section 6.

2 Fault Injection

A system may not always perform as intended or expected. The causes and
consequences of system performance deviations from the expected function are referred
as factors of dependability. Dependability evaluation involves study of failures and
errors. Important aspects of dependability are defined comprehensively in work by
Avizienis et al. [ALR01]. Dependability is particularly important when system/software
being developed is safety critical, where failure can cause serious hazard or loss of life.
Functional safety standards such as IEC-61508 [SVET10] mandate use of fault injection
technique for system development, while it is recommended or highly recommended in
automotive safety standard ISO 26262 [FAG02].

Based on injection of faults to the actual hardware/prototype or on its model, fault
injection techniques can be classified as physical or simulation-based. While based on
the implementation of fault injection mechanisms, the techniques can be classified as
hardware-implemented fault injection (HIFI) or software-implemented fault injection
(SWIFI) techniques. A brief overview of fault injection techniques is provided here
whereas a more detailed description on different fault injection techniques, their
advantages, drawbacks and important tools is presented in [HTI97], [ZAV04].

In hardware-based fault injection, faults are injected at the physical level by controlling
the environment parameters. Faults may be injected by injecting voltage sags, disturb the
power supply, heavy ion radiation, electromagnetic interference etc., while software-
based fault injection refers to techniques that inject faults by implementing it in the
software. Different types of faults can be injected with software based fault injection for
example register and memory faults, error conditions and flags, irregular timings,
missing messages, replays, corrupted memory etc. For using fault injection techniques
where target is a software application, fault injector may be inserted within the
application or it can also be inserted between the target and operating system, while in

case where the target is the operating system, fault injector used have to be embedded
within it itself [Boe87]. Software-based fault injection techniques can be classified into
compile-time faults or run-time faults based on when the faults are injected. Software
implemented fault injection methods can be adapted to inject faults on various trigger
mechanisms such as exception, traps, time-out, code-modification etc.

TABLE 1: ISO 26262 RECOMMENDATION FOR USING FAULT INJECTION TECHNIQUES

ISO 26262 Chapter Reference to recommendation
4

Hardware-software
integration and
testing

•Table 5 — Correct implementation of technical safety requirements at the
hardware-software level.
•Table 8 — Effectiveness of a safety mechanism’s diagnostic coverage at
the hardware-software level.

System integration
and testing

•Table 10a — Correct implementation of functional safety and technical
safety requirements at the system level
•Table 13b — Effectiveness of a safety mechanism's failure coverage at the
system level

Vehicle integration
and testing

•Table 15 — Correct implementation of the functional safety requirements
at the vehicle level
•Table 18 — Effectiveness of a safety mechanism's failure coverage at the
vehicle level

5 Hardware integration
and testing

•Table 11 — Hardware integration tests to verify the completeness and
correctness of the safety mechanisms implementation with respect to the
hardware safety requirements

6 Software unit testing •Table 10 — Methods for software unit testing
Software integration
and testing

•Table 13 — Methods for software integration testing

On the other hand, simulation-based fault injection [ZAV04] involves constructing a
simulation model of given hardware using hardware description languages such as
VHDL and faults are injected into these models during simulation. Two important
approaches to inject faults within simulation-based techniques are:

• Those that need modification to VHDL code, and
• Those that use modified simulation tools using built-in commands of VHDL

simulators.

Simulation-based fault injection techniques have been quite powerful and widely used
for hardware models, though their application on behavioural models for software
artifacts has been limited.

3 Related Work

While MBD has been widely adopted as the development methodology in automotive
domain, quality assurance of MBD is still not well supported. Bringmann and Kramer
[BK06] suggest that in practice only a few automotive domain-specific model based
testing procedures are available, the applied test methods and tools are often proprietary,
ineffective and require significant resource input in form of effort and money. They
highlight the main requirements for successful automotive model based testing some of
which are

• Reactive testing/ closed loop testing
• Real-time issues and continuous signals
• Testing with continuous signals

The authors also introduced TPT (Time Partition Testing) as a model based testing
approach, its test cases can be used on different test platforms and can be executed in
real time. Lamberg et al. [LBE04] also describes a systematic way of testing embedded
software for automotive electronics, the process referred to as MTest allows model-
based testing in early function and software development, but it does not use or suggest
using fault injection for dependability evaluation. In this paper we introduce the fault
bypass modelling (FBM) framework that addresses same requirements to allow closed
loop testing with continuous signals but at model level under fault injection conditions.

Techniques for injecting faults into system models have been developed and evaluated in
ESACS [ESACS] and ISAAC [ABB06] projects using SCADE (Safety-Critical
Application Development Environment) modelling language to simulate hardware
failure scenarios, these techniques were applied to identify fault combinations that lead
to safety case violations. In [VBRE07] a model-implemented fault injection plug-in to
SCADE called FISCADE is introduced which can replace original operators by fault
injection nodes. During execution FISCADE controls the SCADE simulator to execute
the model, inject the fault and log the results. Model based software implemented fault
injection techniques have also been used for dependability evaluation of automotive
functions such as in [JH05]; our work complements these earlier works by presenting a
framework to manage system-environment interdependencies under fault injection
conditions.

A further attempt to use fault injection techniques for software functional model
evaluation is done with development of MODIFI tool [SVET10]. MODIFI (or MODel-
Implemented Fault Injection tool) extends the fault injection methodology to behaviour
models in Simulink. The tool allows for introducing single or multiple point faults on
behavioural models, the fault tolerant system properties are studied by analysing faults
leading to failure. But injecting faults in behavioural models is not same as injecting
faults in physical hardware prototypes or their models; the interdependencies between
the system and their environment may lead to inconsistent simulation results under fault
injection modes. FBM offers a solution in form of fault bypass principle to the single
factor causing incorrect system behaviour under fault injection mode for behavioural
models.

4 Problem Analysis

Fault injection techniques are very useful to test the robustness and dependability of
systems. The methodology is straightforward; however in practice for behavioural
models, systems are not passively related to their environment. The relationship between
system and its environment is active, which means that there are feedback loop(s)
between the system and the environment. In such cases a fault injected into the system
does not necessarily gives the output which is purely the property of that system, for
system-environment models, any change in input of the system not only affects the

system itself, but can also influence its environment which is again fed back to the
system through single or multiple feedback loops. In continuous models it often results
in unrealistic triggers/control values from system to its environment and in turn
wrong/unnatural values for environment parameters to the system. Thus the outputs in
these cases are unreliable making it difficult to distinguish between a correct system
behaviour and system failure. We take a closer look on this problem with an example
from automotive domain, the ABS.

4.1 CASE: ABS (Anti-Lock Braking System)

Figure 1: Simple ABS model representation in Simulink based on [17]. In this model wheel speed and vehicle
speed is used to calculate the relative slip value, which is compared against the desired set value of relative
slip (for maximum traction). The ABS controller (here embedded within the Wheel Speed block)
activates/releases brake pressure according to anti-lock principle when relative slip value is different from
desired slip value; rest of the blocks in the model are used to simulate the dynamics of a moving vehicle.

ABS system takes a given vehicle speed and the wheel speeds from different sensors on
board the vehicle (its environment), the system uses these inputs to calculate relative slip
value at each wheel. Based on this relative slip value a control signal is generated which
controls the activation/deactivation of brake pressure valve in accordance to Anti-lock
braking principle. A simplistic example of single wheel ABS system model in Simulink
is presented in figure 1. (For detailed component description and working of model, refer
to [Sim12]). The same system can be represented in a simplified form, which separates
the elements of ABS system from its environment. The environment is collective term to
represent the functions/parameters that are needed to simulate the system.

Figure 2: ABS model represented in System-Environment configuration. The ABS system takes input of
Vehicle Speed (vs_in) and Wheel Speed (ws_in) as its input, calculates the relative slip value (RS) and using
anti-lock braking principle outputs a control signal (ctrl_sig_out), which is used to control the braking force
applied. For correctly executing the environment model, the relative slip value is also taken from system
(RS_out), which introduces a superficial feedback loop in this case.

Executing the system-environment model to verify ABS functionality gives the
following outputs describing vehicle speed, wheel speed which matches to expected
output of ABS functionality (refer to figure 3). Solid lines represent Vehicle speed, while
dashed lines are used for wheel speed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

Time in sec

Sp
ee

d
in

 R
PM

Vehicle and wheel speed with & without ABS

Vehicle Speed without ABS
Vehicle Speed with ABS
Wheel Speed without ABS
Wheel Speed with ABS

Figure 3: Vehicle and wheel speed with and without ABS system (solid lines represent vehicle speed while
dotted lines, the wheel speeds). Note: The stopping times here are for illustrative and comparative purpose
only (the given model simulates vehicle dynamics but all input parameters to this simulation do not correspond
to any real vehicle model).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

160

180

200

Time in sec

Di
st

an
ce

 in
 m

Stopping distance with & without ABS

Without ABS
With ABS

Figure 4: Stopping distance with and without ABS system shows decrease in stopping distance by about 22
meters.

Vehicle and wheel speed without an ABS system shows wheel locking at about t=1.2 sec
and vehicle taking about 14.5sec to come to a standstill from the point of brakes
application, while with the use of ABS system the wheel locking is prevented due to
ABS system response and vehicle is stopped approximately at t=11sec. Also one can
verify the reduction in stopping distance obtained by suing the ABS system compared to
one without it, indicated here in figure 4.

4.2 Naïve fault injector

In Figure 5 we show an additional block - the fault injector - capable of generating
different faults and injecting them into the input or the output signals of our ABS system.
The fault injector can be used to inject faults both at the input signal and the output
signals of system to evaluate fault tolerant capacity of given system implementation and
also to study the system’s behaviour/characteristics under these conditions. To simulate a
situation where a wheel speed sensor is faulty, we inject a fault at wheel speed signal.
For example injecting a fault by adding a high pulse starting at t=6sec, this high constant
pulse injection simulates a real condition approximation where the sensor relays
permanently high value as its output signal due to a fault/sensor failure. The resulting
vehicle and wheel speed of our system-environment model simulation under given fault
condition is presented in Figure 6. Under the given state/scenario, model simulation
shows vehicle speed increasing exponentially starting at t=6sec (the instant of fault
injection) which is unrealistic. It is understandable that in a real system even if the wheel
sensor would provide a faulty signal to ABS system due to malfunctioning, the vehicle
would stop under normal braking conditions. But due to feedback loop between the

system and environment we get wrong results - making it difficult to evaluate/study the
correct system behaviour in presence of faults, at least in an automated manner.

Figure 5: ABS system-environment model representation in Simulink with fault injector setup.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Time in sec

Sp
ee

d
in

RP
M

Vehicle and wheel speed with fault injection

Vehicle Speed
Wheel Speed

Figure 6: Vehicle and wheel speed with ABS system with fault injection.

One solution under such a situation, which is also widely used in the industry, is to use
open loop discrete models instead of closed loop continuous models. The open loop
testing is represented in Figure 7.

Figure 7: ABS system in open loop discrete model configuration.

Scripts are used to provide recorded data as input, while the output is saved as data file
and compared to reference/expected output. The major limitation with such testing is
that it’s limited by the availability of recorded sensors data as well as need to have the
correct output for reference purposes. Thus to test systems under conditions where the
input and output data is already not available or if a new functionality is developed or
existing system configuration changed, the input/output data may not be available and
thus this type of testing unfeasible. Closed loop continuous models do not suffer from
these limitations.

5 Fault Bypass Modeling (FBM)

Having described the problem in simple terms we analyze why we observe an unrealistic
system response in the ABS system; this will also help us understand the proposed
solution framework, which we call “Fault Bypass Modeling (FBM)”.

To test the ABS function/system under MIL, we have to simulate the environment. The
environment simulates the vehicle dynamics and gives wheel and vehicle speed as input
to the ABS system. The ABS generates the control signal, which controls the brake
pressure like in a real vehicle. But since one of the environment parameters (in this case:
µ or coefficient of friction between the wheel and the road) is dependent on the value of
relative slip, real time µ value can only be calculated using corresponding relative slip
value calculated within the system and provided to environment. The fact that a natural
parameter is calculated based on a property of the system introduces a “superficial” loop
between system and its environment. This “superficial” loop is only present in the
model, as in the real vehicle the value of µ would be naturally determined based on
actual relative slip value at each wheel-road surface. This superficial loop is necessary
for the system-environment model to be executable, as realistic real time µ values during
the simulations are obtained by its virtue, but under fault injection modes this loop
becomes the source of unrealistic feedback mechanisms by providing un-natural values
of µ.

Thus in such cases, in order to obtain a realistic/corrected system behavior under fault
injection conditions, the FBM principle is described as following:

“If a signal injected with faults or its derivative is used to calculate/control any natural
environment parameter(s)1, the part of signal or its derivative which is used to
calculate/control the environment parameter(s) should be made fault free to break the
unrealistic feedback loop”

Figure 8: ABS system-environment model representation in Simulink with fault injector setup using FBM.

The FBM setup although very similar to control system setup, the FBM principle is
fundamentally different from that of control theory. In control system the controller
senses the output of system, compares it to the expected/desired behavior and computes
the corrective action based on model of systems response [AM08], whereas FBM
principle is used while designing new systems to get the correct system response under
fault injection conditions. The desired behavior of system is mostly unknown in case of
FBM, while it is a must for using a control system using control theory.

Figure 9: Control module

Use of FBM principle in our case of ABS system is as follows: since the value of µ in
on-road conditions is not affected by the calculated value of wheel speed sensors but
only by the actual wheel speed, the effect of fault injection on this signal should be
bypassed to calculate the real value of relative slip and provided to the environment
model for correct value prediction of µ according to actual natural scenario. This is

1 Natural Environment Parameter here refers to such a parameter, which is not a property of system but needs
correct value from system to define its correct state/value.

achieved in our model by using a second instance of our system model (ABS Reference
System-1 in Figure 8), which takes the system inputs that by pass the fault injection. And
using the control module (figure 9) real relative slip value are provided to the
environment, while the ABS system control value (ctrl_sig) that is affected by the
injected fault is not bypassed and used to determine the actual system behavior under
fault scenario.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

Time in sec

Sp
ee

d i
n R

PM

Vehicle and wheel speed with fault injection (FBM)

Vehicle Speed
Wheel Speed

Figure 10: Using FBM shows wheel locking at t=6sec, time of fault injection.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

120

140

160

Time in sec

Di
sta

nc
e i

n m

Stopping distance with & without fault injection (FBM)

ABS, without FI
ABS, with FI

Figure 11: Using FBM shows for this system, the stopping distance would increase by approx. 6m under given

fault conditions.

Using the proposed FBM, the system can be simulated with various types of faults to
simulate different faulty conditions that can affect the ABS system. Figure 10 shows the
system output that matches the tester’s expectation on encountering a faulty wheel speed
sensor, the wheel gets locked soon after the fault is injected and vehicle stops under
normal braking conditions without ABS system functionality. Figure 11 indicates an
expected increase in stopping distance by about 6meters and stopping time by about
3sec, if wheel speed senor is failed in the described conditions, such analysis and
information availability at design or early development phase is highly valuable to
validate as well as to improve the system design and implementation.

The signals that should be by-passed can be easily identified using the FBM principle,
i.e. signals, which directly or indirectly influence the value of parameters that in an
actual scenario would be naturally determined and not depend on system, should be by-
passed when using fault injection. The applicability and generalizability of proposed
approach is wide in the context of robust environment modelling. In cases where
environment parameters such as coefficient of friction, coefficient of thermal expansion,
etc.; where the value of environment parameter depends on the system state, FBM
principle can be used to design robust environment models that not only work in normal
working conditions, but can also provide realistic outputs under fault injected conditions.
FBM principle can be incorporated in the environment model itself or system-
environment model can be configured similar to case presented here, to study system
behaviour under fault scenarios. The preferential mode of modelling would be
incorporate FBM within the environment model itself.

6 Conclusions

Model-based development is already widely adopted in automotive and other sectors,
software components in these domains are no longer hand written but usually modeled
with MATLAB/Simulink, Statemate or similar tools. These behavioral models offer
significant opportunity to verify and validate intended functionality and assess their
dependability at an early development stages. Fault injection techniques can be used for
dependability evaluation at model levels as they have been used for hardware artifacts.
However interdependencies between the system and its environment at model level may
cause unrealistic system behavior under fault injection conditions. In this paper we
observed this with the help of ABS system example in Simulink. The problem limits the
use of fault injection techniques at early stages of development which implies difficulty
in testing behavioral models for real life scenarios such as sensor failures, disrupted
signals, impact of noise etc.

A framework referred to as Fault Bypass Modeling (FBM) is introduced and evaluated
using a case example from automotive domain. Using FBM framework, helps obtain
realistic system behavior under fault injection modes. This ensures that correct system
behavior/response under real life situations can be studied and analyzed very early in the
development cycle. A number of test cases can be designed based on known failure
modes and simulated in virtual environment to test models allowing the selection of
models with best fault tolerant properties for further development.

Allowing system behavior analysis early in the development cycle will help reducing the
late defects; improve the quality of function/software under development and also reduce
the development time. Further early system behavior analysis for real life scenarios also
imply better communication and understanding between the multidisciplinary
development teams. These advantages are especially useful while developing safety
critical functions where quality and reliability are of prime importance. Today,
embedded software functions development in automotive as well as other domains such
as aerospace is increasingly designed using model-based methods. MBD has many
advantages, which are well documented.

Historically, the use of fault injection techniques for closed loop model testing has been
limited due to difficulties in separating the system failure due to injected fault or system
failure due to un-natural feedback as result of system-environment interdependencies.
Using FBM resolves this specific problem thus making it possible to use fault injection
techniques correctly to test behavioral models for dependability evaluation, robustness
and correct functionality. Applying FBM means that models can be tested under closed
loop configuration with continuous or discrete signals. Close loop testing allows test
engineers to build/model number of test cases based on real scenarios – thus quickly
expanding the test space without exponential growth of testing effort. Combining fault
injection on the model level with continuous testing, nightly testing or similar
techniques, provides possibilities of continuous quality assurance of functionality and
shorter feedback loops. Storing test cases with injected faults in libraries and adding new
test cases over time decreases the probability of defects slipping to the customers which
is unacceptable for safety critical software.

By allowing more efficient testing of models, FBM helps in early defect detection,
which not only saves significant cost but also reduced the development time. Using fault
injection techniques at models level for dependability evaluation implies that
dependability evaluation of given system can be done already at the function
development level (compared to system development or integration level as it is done
today), more robust models can thus be identified and developed, effectiveness of fault-
tolerance mechanism can also be evaluated and shortcomings identified/removed early.
Preliminary evaluation of FBM applicability in industrial setting was done at Volvo Cars
by conducting two semi-structured interviews with designers/developers with minimum
experience of 30 years in model development and testing. The feedback obtained was
positive, indicating that it could prove to be useful to evaluate correctly what-if scenarios
for complex functions very early in the development process. However it was also
pointed out in the initial evaluation that FBM if used should be integral part of
environment models as the system developers and testers expects the environment
models to be free from superficial loops/ system dependencies.

Future work in this area is expected to use and validate the framework with further case
studies on industrial scale models and incorporate the initial feedback by making FBM
integral part of the environment model, this would mean that system developers and
testers do not have to take into account the FBM, but the development/modeling of
environment models for the given system, FBM should be implemented to allow correct
model testing using fault injection techniques.

Acknowledgements
The work presented here has been funded by Vinnova and Volvo Cars jointly under the
FFI programme (VISEE, Project No: DIARIENR: 2011-04438).

References

[ABB06] O Aerlund, P Bieber, E Boede, M Bozzano, M Bretschneider, C Castel, A Cavallo, M
Cifaldi, J Gauthier, A Griffault, et al. ISSAC, a framework for integrated safety
analysis of functional, geometrical and human aspects. Proc. ERTS, 2006:1-11, 2006.

[ALR01] A. Avizienis, J.C. Laprie, and B. Randell. Fundamental concepts of dependability.
Technical Report Series of Newcastle Upon Tyne Computing Society, 2001.

[AM08] K. J. Astrom and R. M. Murray. Feedback systems: an introduction for scientists and
engineers. Princeton university press, 2008.

[BK06] E. Bringmann and A. Kramer. Model-based testing of automotive systems. In Software
Testing, Verification, and Validation, 2008 1st International Conference on, 2008, pp.
485-493.

[BOE87] Benjamin Brosgol. DO-178c: the next avionics safety standard. In ACM SIGAda Ada
Letters, volume 31, pages 5-6. ACM, 2011.

[ESACS] ESACS Consortium et al. Enhanced Safety Assessment for Complex Systems (Project
Portal). http://cordis.europa.eu/search/index.cfm?fuse action=proj.documentPJRCN =
4947941.

[FAG02] M. Fagan. Reviews and inspections. Software Pioneers--Contributions to Software
Engineering, pages 562-573, 2002.

[HTI97] M. C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.
Computer, 30(4):75-82, 1997.

[ISO11] ISO 26262:2011 Road vehicles - Functional safety standard, 2011.
[JH05] A. Joshi and Mats P. E. Heimdahl. Model-based safety analysis of simulink models

using SCADE design verifier, 2005.
[LBE04] K. Lamberg, M. Beine, M. Eschmann, R. Otterbach, M. Conrad, and I. Fey. Model-

based testing of embedded automotive software using MTest. In SAE World Congress,
2004.

[MM95] R. Megen and D. B. Meyerhoff. Costs and benefits of early defect detection:
experiences from developing client server and host applications. Software Quality
Journal, 4(4):247-256, 1995.

[MST12] N. Mellegård, M. Staron, and F. Törner. A light-weight defect classification scheme
for embedded automotive software and its initial evaluation, 2012.

[SIM12] SimulinkDemo. Modeling an Anti-Lock Braking System. Copyright 2005-2010 The
MathWorks, Inc, 2012.

[SVET12] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren. MODIFI: a MODel-
implemented fault injection tool. Computer Safety, Reliability, and Security, pages
210-222, 2010.

[VBRE07] J. Vinter, L. Bromander, P. Raistrick, and H. Edler. FISCADE - A Fault Injection Tool
for SCADE Models. In Automotive Electronics, 2007 3rd Institution of Engineering
and Technology Conference on, pages. 1-9, 2007.

[ZAV04] H. Ziade, R. A. Ayoubi, R. Velazco, and others. A survey on fault injection techniques.
Int. Arab J. Inf. Technol.,1(2):171-186, 2004.

.

