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Abstract: Fault injection is widely used for validating dependability of computer 
systems. These techniques have been traditionally used for testing dependability of 
the both hardware and software systems. With widespread use of model based 
development in automotive software development more sophisticated needs arise 
for using fault injection techniques at the model level, which can yield significant 
benefits in combination with model-based testing or model mutation. In this paper, 
we address challenges with injecting faults into behavioral models in terms of 
analysis of results and propose a framework for distinguishing between correct and 
incorrect simulation results. The focus is laid on an important challenge 
encountered when injecting faults in continuous models – managing system-
environment interdependencies. We analyze the problem in details and outline an 
effective approach to deal with this problem. 

1 Introduction 

Dependability is a very important feature of any computer system [BOE87]. A crash or 
system failure causes discomfort for consumers who then associate the product with low 
quality. For certain safety critical applications, such as within aerospace and automotive, 
these failures may result in life threatening situations for the occupants. Therefore, 
dependability validation is strictly monitored and regulated in development of safety 
critical applications – for example by following standards like ISO 26262 [ISO11] in 
automotive and DOC-178C [BRO11] for safety-critical software development within the 
aerospace industry. 
 

Fault injection is an important and widely used technique; it has been extensively used as 
technique for experimental dependability evaluation of computer systems and for 
evaluation of fault-tolerance mechanisms. Fault injection has traditionally been used for 
emulating hardware and software faults on the prototypes. The prototype-based fault 
injection has its advantages as given in [BOE87]: 

• Identify dependability bottlenecks, 



• Study system behavior in the presence of faults, 
• Determine the coverage of error detection and recovery mechanisms, and 
• Evaluate the effectiveness of fault tolerance mechanisms (such as reconfiguration 

schemes) and performance loss. 

Alongside the evolution of requirements for dependability, software product 
development methodologies have significantly changed over last decade. Model Based 
Development (MBD) has been embraced widely as preferred tool for developing 
software systems. Many sectors such as aerospace and automotive domain today widely 
use MBD for new software/function development [MST12]. As a consequence of this 
widespread use of MBD, code generation has also gained momentum in these industries 
and Model Based Testing (MBT) alongside with it. Traditional software development 
within automotive and many other domains can be approximated to the established V-
model. In this model of software/product development, testing is heavily focused on the 
right side, which leads to most defects being discovered late in the development process; 
however MBD has the potential of shifting some of the effort spent on Verification & 
Validation (V&V) to the left arm of V-model, i.e. by allowing testing of models at early 
development phases some of the defects can be detected much sooner, this shift could 
save significant amount of resources/cost for the projects [BOE87] and also reduce 
development time.  
 

Megen and Meyerhoff in their study [MM95] showed that about 50% of defects detected 
during testing are found in test preparation, an activity which does not depend on the 
executable code. Still previous case studies within the automotive domain, peak in open 
defects is observed during the late stages of software development just before the release 
dates [MST12]. These observations suggest that by using MBD and through testing 
models early in the development phase, a possibility exists for shifting the open defect 
peak from the right-hand side (close to release) towards earlier phases of the project. 
This shifting of defect detection to the left (early detection) can provide better 
opportunity for the teams to react early upon problems and thus avoid late defects. MBD 
offers an important advantage with respect to early testability – the executable models 
can be simulated to verify and validate the functionality at a very early stage of 
development process. And by using fault injection in these behavioural models, 
dependability measurements can also be done very early on; robust, high fault-tolerant 
models thus can be identified and developed. The functional and logical errors can also 
be identified early in the development process, thereby saving development time and 
costs significantly.  
 

For a majority of software functions developed within automotive and other domains – 
real time behaviour is an important factor and often test cases depend on the system 
behaviour [BK06]. One way to test the complex functional behaviour of such systems in 
real time is to use closed loop testing of models with continuous signals, but testing 
systems with continuous signals is poorly supported by existing test methods which are 
generally data-driven [BK06]. Two major obstacles for testing behavioural/functional 
models of software systems in a closed loop configuration with continuous signals using 
fault injection techniques are:  

• Realistic environment modelling, and 



• Obtaining realistic system response in presence of injected faults to correctly 
differentiate between normal system behaviour from system failure. 

With regard to the first obstacle, most industrial domains currently using MBD on large 
extent are either using or are developing virtual environmental models, which are 
capable of simulating full system and environment conditions that are very close to real 
ones. These models are intended not only to aid and accelerate new 
conceptual/functional development, but also to test developed functional models in MIL 
(Model in Loop) testing for possible logical errors [VBRE07]. Development of these 
extensive environmental models addresses the first challenge. 
 

In this paper we take a closer look at the second obstacle (b) and propose a framework to 
overcome it. The rest of this paper is structured as follows. In the next part (section 2) 
we provide an overview of fault injection techniques, which is followed by a discussion 
on related work in section 3. In section 4, we describe and analyse the problem with 
injecting faults on behavioural models using an example. Section 5 introduces the 
proposed solution to the described problem followed by conclusions in section 6. 

2 Fault Injection 

A system may not always perform as intended or expected. The causes and 
consequences of system performance deviations from the expected function are referred 
as factors of dependability. Dependability evaluation involves study of failures and 
errors. Important aspects of dependability are defined comprehensively in work by 
Avizienis et al. [ALR01]. Dependability is particularly important when system/software 
being developed is safety critical, where failure can cause serious hazard or loss of life. 
Functional safety standards such as IEC-61508 [SVET10] mandate use of fault injection 
technique for system development, while it is recommended or highly recommended in 
automotive safety standard ISO 26262 [FAG02].  
 

Based on injection of faults to the actual hardware/prototype or on its model, fault 
injection techniques can be classified as physical or simulation-based. While based on 
the implementation of fault injection mechanisms, the techniques can be classified as 
hardware-implemented fault injection (HIFI) or software-implemented fault injection 
(SWIFI) techniques. A brief overview of fault injection techniques is provided here 
whereas a more detailed description on different fault injection techniques, their 
advantages, drawbacks and important tools is presented in [HTI97], [ZAV04].  
 

In hardware-based fault injection, faults are injected at the physical level by controlling 
the environment parameters. Faults may be injected by injecting voltage sags, disturb the 
power supply, heavy ion radiation, electromagnetic interference etc., while software-
based fault injection refers to techniques that inject faults by implementing it in the 
software. Different types of faults can be injected with software based fault injection for 
example register and memory faults, error conditions and flags, irregular timings, 
missing messages, replays, corrupted memory etc. For using fault injection techniques 
where target is a software application, fault injector may be inserted within the 
application or it can also be inserted between the target and operating system, while in 



case where the target is the operating system, fault injector used have to be embedded 
within it itself [Boe87]. Software-based fault injection techniques can be classified into 
compile-time faults or run-time faults based on when the faults are injected. Software 
implemented fault injection methods can be adapted to inject faults on various trigger 
mechanisms such as exception, traps, time-out, code-modification etc. 

TABLE 1: ISO 26262 RECOMMENDATION FOR USING FAULT INJECTION TECHNIQUES 

ISO 26262 Chapter Reference to recommendation 
4 
 

Hardware-software 
integration and 
testing 

•Table 5 — Correct implementation of technical safety requirements at the 
hardware-software level. 
•Table 8 — Effectiveness of a safety mechanism’s diagnostic coverage at 
the hardware-software level. 

System integration 
and testing 

•Table 10a — Correct implementation of functional safety and technical 
safety requirements at the system level 
•Table 13b — Effectiveness of a safety mechanism's failure coverage at the 
system level 

Vehicle integration 
and testing 

•Table 15 — Correct implementation of the functional safety requirements 
at the vehicle level 
•Table 18 — Effectiveness of a safety mechanism's failure coverage at the 
vehicle level 

5 Hardware integration 
and testing 

•Table 11 — Hardware integration tests to verify the completeness and 
correctness of the safety mechanisms implementation with respect to the 
hardware safety requirements 

6 Software unit testing •Table 10 — Methods for software unit testing 
Software integration 
and testing 

•Table 13 — Methods for software integration testing 

 

On the other hand, simulation-based fault injection [ZAV04] involves constructing a 
simulation model of given hardware using hardware description languages such as 
VHDL and faults are injected into these models during simulation. Two important 
approaches to inject faults within simulation-based techniques are: 

• Those that need modification to VHDL code, and 
• Those that use modified simulation tools using built-in commands of VHDL 

simulators. 

Simulation-based fault injection techniques have been quite powerful and widely used 
for hardware models, though their application on behavioural models for software 
artifacts has been limited.  

3 Related Work 

While MBD has been widely adopted as the development methodology in automotive 
domain, quality assurance of MBD is still not well supported. Bringmann and Kramer 
[BK06] suggest that in practice only a few automotive domain-specific model based 
testing procedures are available, the applied test methods and tools are often proprietary, 
ineffective and require significant resource input in form of effort and money. They 
highlight the main requirements for successful automotive model based testing some of 
which are 



• Reactive testing/ closed loop testing 
• Real-time issues and continuous signals 
• Testing with continuous signals 

The authors also introduced TPT (Time Partition Testing) as a model based testing 
approach, its test cases can be used on different test platforms and can be executed in 
real time. Lamberg et al. [LBE04] also describes a systematic way of testing embedded 
software for automotive electronics, the process referred to as MTest allows model-
based testing in early function and software development, but it does not use or suggest 
using fault injection for dependability evaluation. In this paper we introduce the fault 
bypass modelling (FBM) framework that addresses same requirements to allow closed 
loop testing with continuous signals but at model level under fault injection conditions.  
 

Techniques for injecting faults into system models have been developed and evaluated in 
ESACS [ESACS] and ISAAC [ABB06] projects using SCADE (Safety-Critical 
Application Development Environment) modelling language to simulate hardware 
failure scenarios, these techniques were applied to identify fault combinations that lead 
to safety case violations. In [VBRE07] a model-implemented fault injection plug-in to 
SCADE called FISCADE is introduced which can replace original operators by fault 
injection nodes. During execution FISCADE controls the SCADE simulator to execute 
the model, inject the fault and log the results. Model based software implemented fault 
injection techniques have also been used for dependability evaluation of automotive 
functions such as in [JH05]; our work complements these earlier works by presenting a 
framework to manage system-environment interdependencies under fault injection 
conditions. 
 

A further attempt to use fault injection techniques for software functional model 
evaluation is done with development of MODIFI tool [SVET10]. MODIFI (or MODel-
Implemented Fault Injection tool) extends the fault injection methodology to behaviour 
models in Simulink. The tool allows for introducing single or multiple point faults on 
behavioural models, the fault tolerant system properties are studied by analysing faults 
leading to failure. But injecting faults in behavioural models is not same as injecting 
faults in physical hardware prototypes or their models; the interdependencies between 
the system and their environment may lead to inconsistent simulation results under fault 
injection modes. FBM offers a solution in form of fault bypass principle to the single 
factor causing incorrect system behaviour under fault injection mode for behavioural 
models.  

4 Problem Analysis 

Fault injection techniques are very useful to test the robustness and dependability of 
systems. The methodology is straightforward; however in practice for behavioural 
models, systems are not passively related to their environment. The relationship between 
system and its environment is active, which means that there are feedback loop(s) 
between the system and the environment. In such cases a fault injected into the system 
does not necessarily gives the output which is purely the property of that system, for 
system-environment models, any change in input of the system not only affects the 



system itself, but can also influence its environment which is again fed back to the 
system through single or multiple feedback loops. In continuous models it often results 
in unrealistic triggers/control values from system to its environment and in turn 
wrong/unnatural values for environment parameters to the system. Thus the outputs in 
these cases are unreliable making it difficult to distinguish between a correct system 
behaviour and system failure. We take a closer look on this problem with an example 
from automotive domain, the ABS. 

4.1  CASE: ABS (Anti-Lock Braking System)  

 
Figure 1: Simple ABS model representation in Simulink based on [17]. In this model wheel speed and vehicle 
speed is used to calculate the relative slip value, which is compared against the desired set value of relative 
slip (for maximum traction). The ABS controller (here embedded within the Wheel Speed block) 
activates/releases brake pressure according to anti-lock principle when relative slip value is different from 
desired slip value; rest of the blocks in the model are used to simulate the dynamics of a moving vehicle. 

ABS system takes a given vehicle speed and the wheel speeds from different sensors on 
board the vehicle (its environment), the system uses these inputs to calculate relative slip 
value at each wheel. Based on this relative slip value a control signal is generated which 
controls the activation/deactivation of brake pressure valve in accordance to Anti-lock 
braking principle. A simplistic example of single wheel ABS system model in Simulink 
is presented in figure 1. (For detailed component description and working of model, refer 
to [Sim12]). The same system can be represented in a simplified form, which separates 
the elements of ABS system from its environment. The environment is collective term to 
represent the functions/parameters that are needed to simulate the system.  
 



 
Figure 2: ABS model represented in System-Environment configuration. The ABS system takes input of 
Vehicle Speed (vs_in) and Wheel Speed (ws_in) as its input, calculates the relative slip value (RS) and using 
anti-lock braking principle outputs a control signal (ctrl_sig_out), which is used to control the braking force 
applied. For correctly executing the environment model, the relative slip value is also taken from system 
(RS_out), which introduces a superficial feedback loop in this case. 
 
Executing the system-environment model to verify ABS functionality gives the 
following outputs describing vehicle speed, wheel speed which matches to expected 
output of ABS functionality (refer to figure 3). Solid lines represent Vehicle speed, while 
dashed lines are used for wheel speed. 
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Figure 3: Vehicle and wheel speed with and without ABS system (solid lines represent vehicle speed while 
dotted lines, the wheel speeds). Note: The stopping times here are for illustrative and comparative purpose 
only (the given model simulates vehicle dynamics but all input parameters to this simulation do not correspond 
to any real vehicle model). 
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Figure 4: Stopping distance with and without ABS system shows decrease in stopping distance by about 22 
meters. 

Vehicle and wheel speed without an ABS system shows wheel locking at about t=1.2 sec 
and vehicle taking about 14.5sec to come to a standstill from the point of brakes 
application, while with the use of ABS system the wheel locking is prevented due to 
ABS system response and vehicle is stopped approximately at t=11sec. Also one can 
verify the reduction in stopping distance obtained by suing the ABS system compared to 
one without it, indicated here in figure 4. 

4.2  Naïve fault injector 

In Figure 5 we show an additional block - the fault injector - capable of generating 
different faults and injecting them into the input or the output signals of our ABS system. 
The fault injector can be used to inject faults both at the input signal and the output 
signals of system to evaluate fault tolerant capacity of given system implementation and 
also to study the system’s behaviour/characteristics under these conditions. To simulate a 
situation where a wheel speed sensor is faulty, we inject a fault at wheel speed signal. 
For example injecting a fault by adding a high pulse starting at t=6sec, this high constant 
pulse injection simulates a real condition approximation where the sensor relays 
permanently high value as its output signal due to a fault/sensor failure. The resulting 
vehicle and wheel speed of our system-environment model simulation under given fault 
condition is presented in Figure 6. Under the given state/scenario, model simulation 
shows vehicle speed increasing exponentially starting at t=6sec (the instant of fault 
injection) which is unrealistic. It is understandable that in a real system even if the wheel 
sensor would provide a faulty signal to ABS system due to malfunctioning, the vehicle 
would stop under normal braking conditions. But due to feedback loop between the 



system and environment we get wrong results - making it difficult to evaluate/study the 
correct system behaviour in presence of faults, at least in an automated manner.  
 

 
Figure 5: ABS system-environment model representation in Simulink with fault injector setup. 
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Figure 6: Vehicle and wheel speed with ABS system with fault injection. 

One solution under such a situation, which is also widely used in the industry, is to use 
open loop discrete models instead of closed loop continuous models. The open loop 
testing is represented in Figure 7.  



 

 
Figure 7: ABS system in open loop discrete model configuration. 

Scripts are used to provide recorded data as input, while the output is saved as data file 
and compared to reference/expected output. The major limitation with such testing is 
that it’s limited by the availability of recorded sensors data as well as need to have the 
correct output for reference purposes. Thus to test systems under conditions where the 
input and output data is already not available or if a new functionality is developed or 
existing system configuration changed, the input/output data may not be available and 
thus this type of testing unfeasible. Closed loop continuous models do not suffer from 
these limitations.  

5 Fault Bypass Modeling (FBM) 

Having described the problem in simple terms we analyze why we observe an unrealistic 
system response in the ABS system; this will also help us understand the proposed 
solution framework, which we call “Fault Bypass Modeling (FBM)”.  
 

To test the ABS function/system under MIL, we have to simulate the environment. The 
environment simulates the vehicle dynamics and gives wheel and vehicle speed as input 
to the ABS system. The ABS generates the control signal, which controls the brake 
pressure like in a real vehicle. But since one of the environment parameters (in this case: 
µ or coefficient of friction between the wheel and the road) is dependent on the value of 
relative slip, real time µ value can only be calculated using corresponding relative slip 
value calculated within the system and provided to environment. The fact that a natural 
parameter is calculated based on a property of the system introduces a “superficial” loop 
between system and its environment. This “superficial” loop is only present in the 
model, as in the real vehicle the value of µ would be naturally determined based on 
actual relative slip value at each wheel-road surface. This superficial loop is necessary 
for the system-environment model to be executable, as realistic real time µ values during 
the simulations are obtained by its virtue, but under fault injection modes this loop 
becomes the source of unrealistic feedback mechanisms by providing un-natural values 
of µ.  
 

Thus in such cases, in order to obtain a realistic/corrected system behavior under fault 
injection conditions, the FBM principle is described as following:  
 



“If a signal injected with faults or its derivative is used to calculate/control any natural 
environment parameter(s)1, the part of signal or its derivative which is used to 
calculate/control the environment parameter(s) should be made fault free to break the 
unrealistic feedback loop” 

 
Figure 8: ABS system-environment model representation in Simulink with fault injector setup using FBM. 

The FBM setup although very similar to control system setup, the FBM principle is 
fundamentally different from that of control theory. In control system the controller 
senses the output of system, compares it to the expected/desired behavior and computes 
the corrective action based on model of systems response [AM08], whereas FBM 
principle is used while designing new systems to get the correct system response under 
fault injection conditions. The desired behavior of system is mostly unknown in case of 
FBM, while it is a must for using a control system using control theory. 
 

 
Figure 9: Control module 

Use of FBM principle in our case of ABS system is as follows: since the value of µ in 
on-road conditions is not affected by the calculated value of wheel speed sensors but 
only by the actual wheel speed, the effect of fault injection on this signal should be 
bypassed to calculate the real value of relative slip and provided to the environment 
model for correct value prediction of µ according to actual natural scenario. This is 
                                                             
1 Natural Environment Parameter here refers to such a parameter, which is not a property of system but needs 
correct value from system to define its correct state/value. 



achieved in our model by using a second instance of our system model (ABS Reference 
System-1 in Figure 8), which takes the system inputs that by pass the fault injection. And 
using the control module (figure 9) real relative slip value are provided to the 
environment, while the ABS system control value (ctrl_sig) that is affected by the 
injected fault is not bypassed and used to determine the actual system behavior under 
fault scenario. 
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Figure 10: Using FBM shows wheel locking at t=6sec, time of fault injection. 
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Figure 11: Using FBM shows for this system, the stopping distance would increase by approx. 6m under given 

fault conditions. 



Using the proposed FBM, the system can be simulated with various types of faults to 
simulate different faulty conditions that can affect the ABS system. Figure 10 shows the 
system output that matches the tester’s expectation on encountering a faulty wheel speed 
sensor, the wheel gets locked soon after the fault is injected and vehicle stops under 
normal braking conditions without ABS system functionality. Figure 11 indicates an 
expected increase in stopping distance by about 6meters and stopping time by about 
3sec, if wheel speed senor is failed in the described conditions, such analysis and 
information availability at design or early development phase is highly valuable to 
validate as well as to improve the system design and implementation. 
 

The signals that should be by-passed can be easily identified using the FBM principle, 
i.e. signals, which directly or indirectly influence the value of parameters that in an 
actual scenario would be naturally determined and not depend on system, should be by-
passed when using fault injection. The applicability and generalizability of proposed 
approach is wide in the context of robust environment modelling. In cases where 
environment parameters such as coefficient of friction, coefficient of thermal expansion, 
etc.; where the value of environment parameter depends on the system state, FBM 
principle can be used to design robust environment models that not only work in normal 
working conditions, but can also provide realistic outputs under fault injected conditions. 
FBM principle can be incorporated in the environment model itself or system-
environment model can be configured similar to case presented here, to study system 
behaviour under fault scenarios. The preferential mode of modelling would be 
incorporate FBM within the environment model itself. 

6 Conclusions 

Model-based development is already widely adopted in automotive and other sectors, 
software components in these domains are no longer hand written but usually modeled 
with MATLAB/Simulink, Statemate or similar tools. These behavioral models offer 
significant opportunity to verify and validate intended functionality and assess their 
dependability at an early development stages. Fault injection techniques can be used for 
dependability evaluation at model levels as they have been used for hardware artifacts. 
However interdependencies between the system and its environment at model level may 
cause unrealistic system behavior under fault injection conditions. In this paper we 
observed this with the help of ABS system example in Simulink. The problem limits the 
use of fault injection techniques at early stages of development which implies difficulty 
in testing behavioral models for real life scenarios such as sensor failures, disrupted 
signals, impact of noise etc.   
 

A framework referred to as Fault Bypass Modeling (FBM) is introduced and evaluated 
using a case example from automotive domain. Using FBM framework, helps obtain 
realistic system behavior under fault injection modes. This ensures that correct system 
behavior/response under real life situations can be studied and analyzed very early in the 
development cycle. A number of test cases can be designed based on known failure 
modes and simulated in virtual environment to test models allowing the selection of 
models with best fault tolerant properties for further development. 
 



Allowing system behavior analysis early in the development cycle will help reducing the 
late defects; improve the quality of function/software under development and also reduce 
the development time. Further early system behavior analysis for real life scenarios also 
imply better communication and understanding between the multidisciplinary 
development teams. These advantages are especially useful while developing safety 
critical functions where quality and reliability are of prime importance. Today, 
embedded software functions development in automotive as well as other domains such 
as aerospace is increasingly designed using model-based methods. MBD has many 
advantages, which are well documented.  
 

Historically, the use of fault injection techniques for closed loop model testing has been 
limited due to difficulties in separating the system failure due to injected fault or system 
failure due to un-natural feedback as result of system-environment interdependencies. 
Using FBM resolves this specific problem thus making it possible to use fault injection 
techniques correctly to test behavioral models for dependability evaluation, robustness 
and correct functionality. Applying FBM means that models can be tested under closed 
loop configuration with continuous or discrete signals. Close loop testing allows test 
engineers to build/model number of test cases based on real scenarios – thus quickly 
expanding the test space without exponential growth of testing effort. Combining fault 
injection on the model level with continuous testing, nightly testing or similar 
techniques, provides possibilities of continuous quality assurance of functionality and 
shorter feedback loops. Storing test cases with injected faults in libraries and adding new 
test cases over time decreases the probability of defects slipping to the customers which 
is unacceptable for safety critical software.  
 

By allowing more efficient testing of models, FBM helps in early defect detection, 
which not only saves significant cost but also reduced the development time. Using fault 
injection techniques at models level for dependability evaluation implies that 
dependability evaluation of given system can be done already at the function 
development level (compared to system development or integration level as it is done 
today), more robust models can thus be identified and developed, effectiveness of fault-
tolerance mechanism can also be evaluated and shortcomings identified/removed early. 
Preliminary evaluation of FBM applicability in industrial setting was done at Volvo Cars 
by conducting two semi-structured interviews with designers/developers with minimum 
experience of 30 years in model development and testing. The feedback obtained was 
positive, indicating that it could prove to be useful to evaluate correctly what-if scenarios 
for complex functions very early in the development process. However it was also 
pointed out in the initial evaluation that FBM if used should be integral part of 
environment models as the system developers and testers expects the environment 
models to be free from superficial loops/ system dependencies.     
 

Future work in this area is expected to use and validate the framework with further case 
studies on industrial scale models and incorporate the initial feedback by making FBM 
integral part of the environment model, this would mean that system developers and 
testers do not have to take into account the FBM, but the development/modeling of 
environment models for the given system, FBM should be implemented to allow correct 
model testing using fault injection techniques. 
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