
Designing an Analyzable and Resilient
Embedded Operating System

Philip Axer, Rolf Ernst
TU Braunschweig

Institute of Computer and Network Engineering
{axer,ernst}@ida.ing.tu-bs.de

Björn Döbel, Hermann Härtig
TU Dresden

Operating Systems Group
{doebel,haertig}@tudos.org

Abstract: Multi-Processor Systems on Chip (MPSoCs) are gaining traction in the
embedded systems market. Their use will allow consolidation of a variety of applica-
tions into a single computing platform. At the same time the probability of transient
hardware malfunctions manifesting at the software level increases.

These applications integrated into the MPSoC possess a range of different require-
ments in terms of timing, safety and resource demand. Hence, it is impossible to
provide a one-size-fits-all solution that allows reliable execution in future MPSoC sys-
tems. In this paper, we present ASTEROID, a set of hardware and operating system
mechanisms that aim to provide reliable execution in such a diverse environment.

1 Introduction

The self-fulfilling prophecy of Moore’s law and the accompanied transistor-shrinking are
the major driver of the silicon industry as we know it today. While this development
allows for the construction of ever faster processors with larger caches and increasing
feature sets leading to multi-core systems and ultimately to many-core architectures, the
downside of this development is that chips will be much more prone to temporary or
constant malfunction due to a variety of physical effects.

Variability caused by future lithographic process (22nm feature size vs. 193nm wave-
length) increases the standard deviation of gate properties such as its delay [Nas10]. The
increased likelihood of manufacturing errors may lead to chips with functional units that
don’t work right from the beginning [Bor05], or to transient effects that only appear under
environmental stress. Heat flux and wear-off (e.g. electro-migration) can cause functional
units to stop working after some time either for the duration of certain environmental con-
ditions, such as temperature being above a certain threshold, or forever [Sch07]. Overeager
undervolting or frequency scaling may lead to another group of errors where signals take
too long to reach their destination within the setup and hold-time bounds or where cross-
talk between unrelated wires induces voltage changes that become visible at the software
level [ZMM04]. Also, radiation originating from space or the packaging of the chip may

A B
A A

A A

a) b)

interconnect

c) loosely coupled

interconnect interconnect

=

Figure 1: a) non-fault tolerant multi-processor. b) static lockstep processor. c) loosely coupled
dynamically coupled processors

lead to single-event upsets (SEU) [Muk08]. A critical charge induced by a charged parti-
cle changes the logic-level, which causes a register to flip. An SEU is a transient effect,
meaning that the hardware remains fully functional. Flipped bits can occur in all units
of modern processors such as memory, register-file or pipeline-control registers. Interest-
ingly, the critical charge required to trigger an SEU, is an inverse proportional function of
the supply voltage and the gate-capacitance.

Our research targets embedded systems running mixed-critical applications with varying
code complexity, and error handling requirements. We aim to come up with a framework
of hardware and software reliability mechanisms from which applications may pick those
that are appropriate under a given fault model, timing requirements, and error detection
and recovery overhead. For the moment, we focus on transient SEUs in functional units
of the CPU. We ignore SEUs at the memory level, as we expect solutions, such as error-
correcting codes (ECC) [Muk08] implemented in hardware to be available. However, our
solution covers faults on the path to and from memory, such as writing to a wrong address
or data being corrupted when fetching from memory. Our final vision is to come up with
a design that is able to incorporate different hardware fault models and a multitude of
resilience mechanisms.

In the remainder of this paper, we take a deeper look at the building blocks to construct
ASTEROID, a resilient real-time operating system. We investigate hardware fault models
and argue why there is no single solution to resilience that suits the requirements posed by
different types of workloads in Section 2. In Section 3 we describe an operating system
service that selectively provides transparent redundant multithreading to critical applica-
tions. Section 4 introduces hardware-assisted instruction and data fingerprinting, which
can be used to speed up software mechanisms and also allows hardening the lower soft-
ware layers such as the OS kernel itself. We then go on to describe possible ways of
implementing recovery in the ASTEOROID system in Section 5 and describe ways for
analyzing the real-time behavior of the whole system in Section 6.

2 System, Applications and Fault Models

A wide range of today’s embedded application domains, such as smart phones, in-car
electronics, and industrial automation, look into consolidating their applications into Mul-
ti-Processor Systems on Chip (MPSoC). By using a powerful MPSoC platform, it becomes

no time‐critical
functions

mostly time‐critical
functions

most functions
with safety
requirements

no functions with
safety
requirements

traffic lights with
centralized
control

general purpose
computing

entertainment/
multimedia

automotive –
active safety
control

aircraft ‐ cabin
management

avionics – flight
management system

time criticality

sa
fe
ty
 c
rit
ic
al
ity

optical wideband
communication

industrial – process
automation

medical ‐
pacemaker

mobile
communication

Figure 2: The two dimensions of criticality: safety and time

possible to integrate computationally intensive algorithms (e.g. camera supported pedes-
trian detection) with control oriented applications (e.g. active steering).

The architecture of a MPSoC system is in general very similar to the architecture depicted
in Figure 1 a). A set of processors is connected to an interconnect facility, which can be
a bus, crossbar switch or a sophisticated network-on-chip. Peripheral devices, such as I/O
devices and memory controller, are not depicted.

Consolidation into MPSoC systems will integrate different applications with varying re-
quirements into a single system. This system is supposed to allow reliable execution of
these applications. A traditional approach to achieve reliability is to statically replicate
hardware and software components, for instance by performing static lock stepping as de-
picted in Figure 1 b). However, this static approach requires resource over-provisioning,
because it replicates the whole software stack instead of taking into account the specific
requirements of each application.

Some applications may have hard real-time constraints or are safety-critical whereas others
are non-critical at all (e.g. best-effort entertainment). A system design incorporating such
considerations is said to support mixed-criticality applications. Criticality can be broken
down into two orthogonal dimensions as depicted in Figure 2.

For time-critical applications without safety requirements, the sole focus lies on timeliness
of computation or communication. Typical examples for this domain are embedded mobile
communication applications e.g. UMTS or LTE, as well as video decoding. Here, guar-
anteed data integrity is not safety-relevant because transient or permanent error conditions
do not have catastrophic consequences.

For purely safety-defined systems it is crucial that integrity of computation is preserved,
even in presence of errors, e.g. traffic lights which are controlled by a centralized control
facility. In case of failures, pedestrians and car passengers can be injured or even killed,

thus safety demands are high. However, it is not critical if light phases are of accurate
timing, as long as the signals are consistent. The taxonomy of safety is defined by safety
standards and is the focus of dependability research [ALRL04].

Additionally, some application scenarios require both, timing and safety constraints, to be
met. Examples in this area are in-car safety systems, such as airbag controllers. From
a reliability perspective, such applications demand an extremely short fault detection la-
tency. For recovery, a simple scheme, such as restarting the application from an initial
checkpoint, may suffice.

It appears there is no one-size-fits-all solution that can be applied to all of the above scenar-
ios. Therefore, in the ASTEROID system architecture we try to accommodate the needs
of all applications by providing a set of detection and recovery techniques from which
developers can chose the ones that best fit their requirements in terms of latency, energy
consumption, or normal-mode execution overhead. Our approach is to use loosely coupled
cores as depicted in Figure 1 c). These cores can either be used to replicate critical appli-
cations, or they can be used as single cores to execute applications that are not replicated
because they either are not critical enough or they leverage other means of fault tolerant
execution, such as arithmetic encoding [FSS09].

The operating system plays a crucial role in our resilient design. On the one hand it
needs to provide error detection and recovery mechanisms in those cases where hardware
mechanisms don’t suffice. On the other hand, studies show that many kinds of hardware
errors finally also lead to errors that corrupt operating system state [LRS+08, SWK+05].
Our work uses the L4/Fiasco.OC microkernel [LW09] as the OS basis. The inherent design
of the microkernel provides us with fine-grained isolation between OS components. As
we can expect more than 65% of all hardware errors to corrupt OS state [LRS+08] before
they are detected, this isolation allows us to limit the propagation of corrupted data and
therefore promises to reduce error detection and recovery overhead.

3 Redundant Execution as an Operating System Service

In general, fault-tolerant systems deal with potential hardware faults by adding redun-
dancy. Such redundancy can for instance be added by using duplicate hardware execution
units [BBV+05,IBM08], employing redundant virtual machines [BS95], or compiling the
software stack with compilers that add redundant computations [RCV+05] or apply arith-
metic encodings to data and instructions [FSS09].

Compiler-based replication also allows to replicate at an application granularity. However,
it requires the source code of all applications to be available for recompilation, which is
not true for many proprietary applications. For instance, best-effort applications for mobile
devices often come from popular app stores, where the user has no influence at all on how
the applications are compiled.

As a result, for ASTEROID we decided to provide replicated execution as an operating
system service on top of the L4/Fiasco.OC microkernel. The resulting system architecture
is shown in Figure 3. The base system is split into an operating system kernel running
in privileged mode and additional runtime services running as user-level components. To

Replicated AppsUnreplicated Apps

L4 Runtime Environment Romain

L4/Fiasco.OC Kernel

Hardware

User

Kernel

Figure 3: ASTEROID system architecture

this system we add a new component, Romain, which provides software-implemented
redundant multithreading [RM00].

The Romain framework provides replication for critical user-level applications without
requiring changes to or support from the replicated application. Furthermore, as we are
basing our work on a microkernel, complex OS code, such as device drivers and protocol
implementations, runs in user-level components which can be covered by this replication
scheme as well.

The current implementation of Romain allows replicating single-threaded applications on
top of L4/Fiasco.OC. Romain splits the application into N replicas and a master that man-
ages and controls these replicas as depicted in Figure 4. The master serves as a shim
between the replicas and the rest of the system. It makes sure that all replicas see the same
input (IPC messages, results from certain instructions, such as reading the hardware time
stamp counter) at the same point in time, because only then can we enforce deterministic
behavior in all replicas.

Replicated Application

Replica Replica Replica

Master

=

CPU
Exceptions

Memory
Manager

System Call
Handler

Figure 4: Romain Architecture

To prevent undetected faults from propagating into other replicas before the master de-
tects them, each replica is executed within a dedicated address space. The master process
leverages L4/Fiasco.OC vCPUs [LWP10], a mechanism originally designed to implement
virtual machines, to launch the replicas. The benefit of using a vCPU is that whenever
a replica raises a CPU exception, such as a system call or an MMU fault, this exception
automatically gets reflected to the master process.

Once a CPU exception is raised, the master waits for all replicas to raise their next excep-
tion and then compares their states. This comparison includes the replicas’ CPU registers,
as well as kernel-provided control information, such as the type of the raised exception.
Furthermore, the L4/Fiasco.OC User-Level Thread Control Block (UTCB), a memory re-
gion used to pass system call parameters to the kernel, is inspected for each replica. The
state comparison does not include a comparison of the complete replica address spaces as
this would lead to infeasible runtime overheads.

The decision to not incorporate all memory into the state comparison manifests a trade-
off between lower runtime overhead and lower error detection latency. In Section 4 we
present instruction fingerprinting, a small hardware extension that will help us to achieve a
low runtime overhead while incorporating the complete state of a replica into the required
state comparison.

In addition to performing state comparisons, the master process manages the replicas’
memory layout. As explained in Section 1, we assume memory to be protected by ECC.
This means that once data is stored in memory, we can assume it to remain correct. Hence,
any read-only memory can be assumed to never be corrupted. Therefore, such memory
regions only exist as a single copy and are shared among all replicas. In contrast, each
replica works on a private copy of every writable memory region.

The memory management strategy discussed above works for memory that is local to
the replicated application. However, applications in the ASTEROID system may also
use shared memory for transmitting data back and forth. In a setup involving replicated
applications, the master then needs to make sure that whenever replicas access shared
memory, they read/write the same data regardless of timing or order of access. Hence,
in contrast to application-internal memory, the master needs to intercept and emulate all
accesses.

Emulating memory accesses would involve an instruction emulator as part of the master
process, which has drawbacks in terms of runtime overhead, portability, and maintainabil-
ity: the emulator adds a large amount of code to the master process, emulation is slower
than directly executing the instructions on the physical CPU, and for every hardware plat-
form the system is supposed to run on, the emulator needs to be implemented from scratch.

To avoid the complexity of a full instruction emulator, we implement a copy&execute
technique in Romain. As a prerequisite for this, the master makes sure that shared mem-
ory regions are mapped to the same virtual address. However, only the master gets full
read/write access to the region, whereas the replicas raise page faults upon each access.
When encountering a page fault, the master inspects the replica state and copies the fault-
ing instruction into a buffer local to the master. This buffer contains code to a) push the
replica’s CPU state into the master’s physical registers, b) execute the faulting instruction,

and c) restore the replica’s and master’s register states. The master then executes the code
within this buffer.

The copy&execute strategy works for most shared memory accesses, but has two main
drawbacks: First, a few instructions are unsupported (e.g., indirect memory jumps, and
instructions with multiple memory operands). Second, the execution of the instruction
within the master is not replicated. Therefore, a transient fault that occurs while executing
this instruction will not be detected. In future work we will explore ways to address these
issues.

It remains to be noted, that while Romain protects a wide range of user-level components
against hardware errors, it does not protect the microkernel itself nor the Romain master
process. Furthermore, it relies on certain hardware mechanisms (exception delivery, ad-
dress space protection, MMU fault handling) to function correctly. We refer to this set of
components as the Reliable Computing Base (RCB) [ED12], which needs to be protected
in a different way. We are aware of the problem and believe that the hardware mechanisms
described in Section 4 can serve as initial building blocks for solving it. However, this is
still an open issue and left for future work.

To evaluate the overhead imposed by replicating applications using Romain, we ran exper-
iments using the MiBench benchmark suite as a single instance, as well as in double- and
triple-modular redundancy mode. We compared their runtimes on a test computer with 12
physical Intel Core2 CPUs running at 2.6 Ghz. Hyperthreading was turned off and every
replica as well as the master were pinned to a dedicated physical CPU.

Figure 5: Romain overhead for MiBench benchmarks in double and triple modular redundancy mode

The results in Figure 5 show that the normalized runtime overheads range between 0.5%
and 30%, but are below 5% in most of the benchmarks. Further investigation showed
that the overheads correlate with the amount of memory faults raised by the benchmark –
more page faults lead to more interaction with the master process and therefore imply a
higher runtime cost. In future work we will therefore also investigate whether the memory
management cost can be optimized.

1. April 2010 | Referent | Kurztitel der Präsentation (bitte im Master einfügen) | Seite 11

virtual address space

Registers

heap

stack

Task State

IF

ID

MEM

WB

EXE
RA

X

Processor

Erroneous
write1

2
3

Figure 6: Illustrative example of an error in the processor pipeline (1) which causes an erroneous
write (2) and leads to an error in the heap state (3).

4 Error Detection Using Hardware-Assisted Fingerprinting

A central aspect of fault-tolerance is the employed error detection scheme, as already
discussed in the previous sections. Figure 6 shows how pipeline errors propagate from the
processor into the task’s state. Here the task state consists of the entire virtual memory
space as well as the architecturally visible registers.

For instance an illegal register access causes an erroneous operand fetch (1). When the
content of this register is used later for memory accesses (e.g. writes), the state of the
task is modified illegally. The objective of error-detection is to identify and signal such
alterations. There are several metrics by which we can measure the quality of the error-
detection mechanism:

• Error coverage, which is the fraction of errors which are detectable by the mecha-
nism, should be as high as possible

• Error latency which is the time from error occurrence to error detection, should be
as low as possible.

• Additional overhead (performance penalty, chip area, code size) should be as low as
possible.

The Romain architecture as presented in Section 3 compares state on externalization only
(e.g. on system-calls and exceptions). Thus, the error coverage of Romain is sufficiently
high, because all data is eventually subject to a comparison before it becomes visible.
As already discussed, without further consideration of shared-memory communication the
execution time overhead of the presented approach is reasonably low. But it also comes
with some inherent drawbacks with respect to our requirements: The major issue is that
the error latency is not bounded. An error in the task’s state as depicted in Figure 6 can
stay dormant for long time until the erroneous state is externalized. An arbitrary long
detection latency can potentially render an error recovery mechanism useless if real-time
requirements are involved.

To circumvent this problem we use hardware assisted fingerprinting, which was introduced
in [SGK+04]: A dedicated fingerprint unit which resides in the pipelines of all cores in

1. April 2010 | Referent | Kurztitel der Präsentation (bitte im Master einfügen) | Seite 10

IF

ID

MEM

WB

Instruction FP+
EXE
RA

X

Data FP+result

inst

Chunk CNT
exception
retire

Figure 7: Leon 3 pipeline with fingerprinting extensions.

the processor hashes all retired instructions. This generates a fingerprint which represents
an unique hash for a specific instruction/data sequence. Since the same code is executed
on redundant cores we can use the fingerprint as a basis for DMR voting. In the original
work from [SGK+04], voting between redundant cores is performed when cache lines
become visible on the system bus. However, this approach has some inherent drawbacks,
especially in the field of real-time systems and with respect to mixed-critical applications.
Since the mechanism relies on the cache coherency protocol as a synchronization primitive
for comparison, the mechanism implicates a high degree of timing uncertainty (e.g. when
comparisons are performed and how often). Also, no differentiation between task contexts
is made, thus all instructions end up in one single fingerprint and redundancy cannot easily
be performed task-wise.

Thus, we propose to use fingerprinting differently and implemented context-aware fin-
gerprinting, where a fingerprint is generated per context (if required). We extended the
LEON 3 processor [SWSG06] with a fingerprint unit as shown in Figure 7. The unit con-
sists of three building blocks: a chunk counter which counts retired instructions, the data
fingerprint which taps the data path of the pipeline and the instruction fingerprint which is
fed with the retired instruction word. All of these registers are implemented as ancillary
state registers (ASRs) which can be read by software.

The unit works the following way: Both fingerprint registers continuously hash data and
instructions. In case of interrupts or traps, the processor will store a copy of the recent
fingerprint and the operating system may store the fingerprint in the task control block.
In the same way an old fingerprint can be restored on a return-from-interrupt instruction.
Thereby, per-task fingerprints can be implemented by the operating system and we are able
to handle asynchronous events.

Data and instruction fingerprint reflect a hash over the task state and can be used in the
Romain master for voting. However, this approach still exhibits the drawback of an un-
bounded detection latency, because a task first needs to raise a CPU exception to trigger
comparison.

To artificially increase the voting-frequency in a predictable way, we implemented chunk
checking. Chunk Checking is a feature which is controlled by the operating system to

control the error detection latency for long-running workloads. Per se, the operating sys-
tem has no method to interrupt two copies at a predictable instant in time (on exactly the
same instruction) in order to compare intermediate results. Here, we use the chunk counter
which is decremented with each executed instruction and causes a trap if it reaches zero.
This enables the operating system to compare intermediate results without using the highly
inefficient single-stepping mode.

A third mode of operation is the signature checking mode. In this mode we leverage from
the fact that we have an individual instruction fingerprint. By construction it is possible to
pre-compute instruction fingerprints for each basic block. This can be done by the com-
piler or by dynamic recompilation during runtime as part of an operating system service.
This enables to implement near zero-overhead signature checking for basic blocks: A ded-
icated match-fingerprint instruction tests the target and the actual fingerprint which may
result in a fingerprint-miss trap.

5 Recovery

The mechanisms described in this paper allow us to detect transient hardware errors. How-
ever, a fully functional system also needs to recover from these errors. In this Section we
present ideas on ways to provide recovery in the ASTEROID system. As explained in
Section 3, our system supports arbitrary n-way modular redundancy. This implies that we
can use voting among the replicas to find the set of correct replicas and then overwrite the
faulting replicas states with correct ones.

Unfortunately, from a practical perspective every additional layer of redundancy will in-
crease the runtime overhead implied by our system and therefore users may opt to use
double-modular redundancy (DMR). This approach allows only error detection, but does
not include recovery. Therefore, DMR needs to be combined with a checkpoint/restart
mechanism. We are currently investigating state if state-of-the-art checkpointing such
as [AAC09] is suitable to fit into ASTEROID.

Restarting from a checkpoint has implications on the rest of the system, because other
applications may depend on the service provided by the restarted application and the
restart may invalidate recent computations or application service state. This problem
has been investigated before [Her10, DCCC08]. Our solution to reintegration is based
on L4ReAnimator [VDL10], an application framework that keeps track of references to
external services.

L4ReAnimator is responsible for a) storing how these references were obtained, and b)
monitoring the references in order to detect service interruption. Once an external service
is restarted, the framework will lazily detect this restart upon the next invocation of the
service. Then, it will re-establish a connection using the stored connection information
and potentially recover a consistent session state. Thereafter, the application may continue
using the service.

In addition to combining ASTEROID’s error detection with L4ReAnimator, we plan to
investigate whether we can use heuristics to figure out the faulty replica in a DMR setup.
The first heuristic could be based on observing CPU exceptions raised by the replicas: as-
suming that transient faults often lead to crashes, we will see a faulty replica raise a CPU

η
3

η
4

η
5

6

7

8

Figure 8: Example for task level redundancy on a MPSoC

exception (e.g., an invalid memory access) while the non-faulty replica will simply con-
tinue execution and raise no fault. In such case, we might deduce that the faulting replica
is the broken one. However, we cannot be 100% confident, because the invalid memory
access may well be valid application behavior and the faulty replica may simply be stuck
in an infinite loop raising no exceptions. Initial fault injection experiments indicate that
such infinite loops are rare exceptions, though. Furthermore, the chunk checking mecha-
nism described in Section 4 will force any replica to raise an exception within a bounded
amount of time.

Another useful heuristic may involve programmer interaction. Applications may come
with built-in consistency checks in the form of assertions added to the application’s code.
When encountering a fault, the master process may then check if the fault was raised by a
known assertion from the application code and thereby deduce the faulty replica.

Another option would be to add consistency checker functions. These can be registered
with the master process upon startup. Upon a fault the master can then run the checker
function on the replicas’ states to detect the faulty replica. As the checker function in-
cludes developer knowledge, it may be much faster in figuring out which replica’s state is
inconsistent.

6 Can we Provide Real-Time Guarantees?

The correctness of behavior depends not only on the logical result, but especially in time-
critical systems, also on the instant in time at which the result is produced [Kop97]. So
even if the system is capable of detecting and recovering from errors on the fly, it is still
possible to miss deadlines caused by transient overload effects. Thus for real-time systems
we must differentiate between logical correctness and timing correctness. The system is
working correctly only if the platform satisfies two criteria:

1. the result must be logically correct according to the specification

2. the data must be delivered in time (i.e. deadlines must be met)

Vise versa, a failure is defined as either logical incorrectness or a timing violation.

The problem of ensuring logical correctness can be solved by replicating only critical tasks
as shown in Figure 8. This particular example shows two cores which are part of a larger
MPSoC. Some tasks of the task graph execute safety-critical code (τ1, τ2), the other rep-
resent other applications (e.g. uncritical, hard real-time or best-effort) computations. As
annotated, safety critical tasks are executed redundantly in a DMR fashion on both cores.
Given that the operating system performs comparison operations between all external I/O
issued by τ1 and τ2, the platform is capable of detecting logical errors for critical tasks
without massive duplication.

With respect to timing violations, the first question that needs to be raised is “why do
we need novel real-time analysis methods?” Former research in the field of performance
analysis led to a sophisticated set of analysis approaches. Most of them are based on
the well studied busy-window approach initially introduced in [Leh90], which allows us
to analyze component behavior. We can use it to derive the response-time, which is the
largest time from task activation until the data has been processed. If the response-time is
smaller than a specified deadline, then this task is schedulable.

The busy window idea can also be extended to a system-wide analysis which considers
communicating tasks. Both, compositional performance analysis (CPA) [HHJ+05] and
modular performance analysis (MPA) [Wan06], provide such functionality.

Unfortunately, CPA and MPA alone are not capable of analyzing error events and recovery
operations, because their effects are not bounded in time. Although unlikely, it is generally
possible that a lot of errors happen at once which leads to a violation of real-time proper-
ties. Thus, since error occurrences are probabilistic we must transition to a probabilistic
real-time analysis.

Safety regulations dictate a minimal level of dependability for safety critical functions.
Therefore, most standards define a probabilistic metric such as Mean Time To Failure
(MTTF) in order to quantify reliability. As software function is generally implemented
as a task graph which is mapped to computational and communication resources, those
resources inherit the software’s dependability requirements. Thus, the following analysis
must be able to show that the actual MTTF of a task is larger than the required MTTF.

We formulated a timing analysis which accounts for errors and recovery events in [ASE11].
Due to limited space, in this paper we only sketch the idea briefly. For the mathematical
description we refer to [ASE11].

Our analysis focuses on transient errors and soft errors in particular. Soft errors caused by
radiation or variability will manifest as logical bit-flips in architectural registers. We as-
sume that the fault causing bits to flip will vanish immediately and has no temporal extent
(there are no intermittent errors). Since the exact arrival of error-events is highly unpre-
dictable, we use stochastic models to evaluate the behavior on a probabilistic base. The
occurrence of errors on a core is modeled using Poisson processes with a given error-rate
λi per core which accounts for errors affecting core components (e.g. ALU and FPU).
Specifying per-core error rates models heterogeneous multi-core CPUs in which some
cores may inherently be more reliable than others. This can be the case if dedicated hard-
ware error detection and recovery mechanisms are used, such as proposed by [ABMF04]
or by using more reliable but less performant silicon process parameters.

Given our model, the following equation gives the probability for unaffected execution of
processor Pi during the time interval ∆t:

P (no error in time ∆t) = e−λi∆t (1)

To derive the reliability for each task, we use a two step algorithm. First, we identify possi-
ble error manifestations (scenario) which lead to feasible schedules. Therefore, we model
the specific timing-effect of the error-scenario and analyze the model using response-time
analysis methods, known from the CPA.

In the second step, after discovering the working scenarios, we can use Equation 1 to
calculate the probability that one working scenario will actually happen. Based on these
probabilities it is possible to calculate the MTTF in order to decide whether the reliability is
sufficiently high. This in turn lets us decide whether tasks under errors met their deadlines
sufficiently often to fulfill all requirements.

7 Conclusion

In this paper we presented building blocks for ASTEROID, an analyzable, resilient, em-
bedded operating system design. ASTEROID accommodates applications with varying
safety, timing, and resource requirements. Unreliable applications are hardened by using
transparent software-implemented redundant multithreading. A fingerprinting mechanism
in hardware decreases error detection latencies and increases error coverage. Additionally,
we sketched ideas on how to perform error recovery and gave a brief overview of how the
ASTEROID system can be analyzed with respect to real-time requirements in the presence
of transient hardware errors.

Acknowledgments

This work was supported in parts by the German Research Foundation (DFG) as part of the
priority program ”Dependable Embedded Systems” (SPP 1500 - http://spp1500.
itec.kit.edu).

References

[AAC09] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop. In 23rd IEEE International Parallel and
Distributed Processing Symposium, Rome, Italy, May 2009.

[ABMF04] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making typical silicon matter with
Razor. IEEE Computer, 37(3):57–65, 2004.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, 1(1):11 – 33, 2004.

[ASE11] Philip Axer, Maurice Sebastian, and Rolf Ernst. Reliability Analysis for MPSoCs
with Mixed-Critical, Hard Real-Time Constraints. In Proc. Intl. Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Taiwan, October 2011.

[BBV+05] D. Bernick, B. Bruckert, P.D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen.
NonStop: Advanced Architecture. In Dependable Systems and Networks, 2005. DSN
2005. Proceedings. International Conference on, pages 12–21, june-1 july 2005.

[Bor05] S. Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. Micro, IEEE, 25(6):10 – 16, nov.-dec. 2005.

[BS95] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95, pages
1–11, New York, NY, USA, 1995. ACM.

[DCCC08] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Campbell. CuriOS:
Improving Reliability through Operating System Structure. In USENIX Symposium on
Operating Systems Design and Implementation, pages 59–72, San Diego, CA, Decem-
ber 2008.

[ED12] Michael Engel and Björn Döbel. The Reliable Computing Base – A Paradigm for
Software-Based Reliability. In Proc. of the 1st Workshop on Software-Based Methods
for Robust Embedded Systems, SOBRES’12, 2012.

[FSS09] Christof Fetzer, Ute Schiffel, and Martin Süsskraut. AN-Encoding Compiler: Building
Safety-Critical Systems with Commodity Hardware. In Proceedings of the 28th Inter-
national Conference on Computer Safety, Reliability, and Security, SAFECOMP ’09,
pages 283–296, Berlin, Heidelberg, 2009. Springer-Verlag.

[Her10] Jorrit N. Herder. Building a dependable operating system: Fault Tolerance in MINIX3.
Dissertation, Vrije Universiteit Amsterdam, 2010.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System Level
Performance Analysis - The SymTA/S Approach. IEE Proc. Computers and Digital
Techniques, 152(2):148–166, March 2005.

[IBM08] IBM. PowerPC 750GX Lockstep Facility. IBM Application Note, 2008.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[Leh90] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines.
Proc. 11th Real-Time Systems Symposium, pages 201–209, Dec 1990.

[LRS+08] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S.
Adve, and Yuanyuan Zhou. Understanding the propagation of hard errors to software
and implications for resilient system design. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XIII, pages 265–276, New York, NY, USA, 2008. ACM.

[LW09] Adam Lackorzynski and Alexander Warg. Taming Subsystems: Capabilities as Univer-
sal Resource Access Control in L4. In IIES ’09: Proceedings of the Second Workshop
on Isolation and Integration in Embedded Systems, pages 25–30, Nuremberg, Germany,
2009. ACM.

[LWP10] Adam Lackorzynski, Alexander Warg, and Michael Peter. Generic Virtualization with
Virtual Processors. In Proceedings of Twelfth Real-Time Linux Workshop, Nairobi,
Kenya, October 2010.

[Muk08] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[Nas10] Sani R. Nassif. The light at the end of the CMOS tunnel. In Int. Conf. on Application-
specific Systems Architectures and Processors, pages 4 –9, july 2010.

[RCV+05] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. August.
SWIFT: Software Implemented Fault Tolerance. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 243–254. IEEE Computer
Society, 2005.

[RM00] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via simul-
taneous multithreading. SIGARCH Comput. Archit. News, 28:25–36, May 2000.

[Sch07] Dieter K. Schroder. Negative bias temperature instability: What do we understand?
Microelectronics Reliability, 47(6):841–852, 2007.

[SGK+04] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatryk. Finger-
printing: bounding soft-error-detection latency and bandwidth. IEEE Micro, 24(6):22–
29, 2004.

[SWK+05] Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, Sanjay J. Patel, and
Ravishankar K. Iyer. An Experimental Study of Soft Errors in Microprocessors. IEEE
Micro, 25:30–39, November 2005.

[SWSG06] Zoran Stamenkovic, C. Wolf, Günter Schoof, and Jiri Gaisler. LEON-2: General
Purpose Processor for a Wireless Engine. In Matteo Sonza Reorda, Ondrej Novák,
Bernd Straube, Hana Kubatova, Zdenek Kotásek, Pavel Kubalı́k, Raimund Ubar, and
Jiri Bucek, editors, DDECS, pages 50–53. IEEE Computer Society, 2006.

[VDL10] Dirk Vogt, Björn Döbel, and Adam Lackorzynski. Stay strong, stay safe: Enhancing
Reliability of a Secure Operating System. In Proceedings of the Workshop on Isolation
and Integration for Dependable Systems (IIDS 2010), Paris, France, April 2010. ACM.

[Wan06] E. Wandeler. Modular performance analysis and interface-based design for embedded
real-time systems. PhD thesis, SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH, 2006.

[ZMM04] Dakai Zhu, R. Melhem, and D. Mosse. The effects of energy management on reliability
in real-time embedded systems. In Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, ICCAD ’04, pages 35–40, Washington, DC,
USA, 2004. IEEE Computer Society.

